Fluoroquinolone resistance mechanisms in an Escherichia coli isolate, HUE1, without quinolone resistance-determining region mutations
نویسندگان
چکیده
Fluoroquinolone resistance can cause major clinical problems. Here, we investigated fluoroquinolone resistance mechanisms in a clinical Escherichia coli isolate, HUE1, which had no mutations quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV. HUE1 demonstrated MICs that exceeded the breakpoints for ciprofloxacin, levofloxacin, and norfloxacin. HUE1 harbored oqxAB and qnrS1 on distinct plasmids. In addition, it exhibited lower intracellular ciprofloxacin concentrations and higher mRNA expression levels of efflux pumps and their global activators than did reference strains. The genes encoding AcrR (local AcrAB repressor) and MarR (MarA repressor) were disrupted by insertion of the transposon IS3-IS629 and a frameshift mutation, respectively. A series of mutants derived from HUE1 were obtained by plasmid curing and gene knockout using homologous recombination. Compared to the MICs of the parent strain HUE1, the fluoroquinolone MICs of these mutants indicated that qnrS1, oqxAB, acrAB, acrF, acrD, mdtK, mdfA, and tolC contributed to the reduced susceptibility to fluoroquinolone in HUE1. Therefore, fluoroquinolone resistance in HUE1 is caused by concomitant acquisition of QnrS1 and OqxAB and overexpression of AcrAB-TolC and other chromosome-encoded efflux pumps. Thus, we have demonstrated that QRDR mutations are not absolutely necessary for acquiring fluoroquinolone resistance in E. coli.
منابع مشابه
The involvement of mutation in the serine 83 of quinolone resistant determining regions of the GyrA Gene in resistance to ciprofloxacin in Escherichia coli .
Appearance of bacteria resistant to antibacterial agents puts physicians in trouble and threatens the health of the world. The rapid development of bacterial resistance in Escherichia coli to ciprofloxacin makes difficult the treatment of infectious diseases. So, detection of the locations of possible mutations in gyrase A gene ( gyrA ) in these mutants is very important to determine the mech...
متن کاملA fluoroquinolone-resistant Escherichia coli clinical isolate without quinolone resistance-determining region mutations found in Japan.
متن کامل
Fluoroquinolone-resistance mechanisms and phylogenetic background of clinical Escherichia coli strains isolated in south-east Poland.
Fluorochinolones are a class of broad-spectrum antimicrobials in the treatment of several infections, including those caused by Escherichia coli. Due to the increasing resistance of bacteria to antimicrobials, an understanding of fluoroquinolone resistance is important for infection control. The aim of this study was to determine susceptibility of clinical E. coli strains to fluoroquinolones an...
متن کاملHigh frequency of mutations in gyrA gene associated with quinolones resistance in uropathogenic Escherichia coli isolates from the north of Iran
Objective(s): Regarding the global burden of uropathogenic Escherichia coli (UPEC) infections, prevention and treatment of such infections play a significant role in healthcare management. The inordinate use of fluoroquinolones led to a worldwide spread of quinolone-resistant strains. Therefore, this study aimed to investigate mutations in codons 83 and 106 of gyrA gene in UPEC isolates in the ...
متن کاملIsolation and molecular characterization of fluoroquinolone-resistant Escherichia coli from poultry litter.
Nineteen fluoroquinolone-resistant Escherichia coli strains were isolated from poultry litter. Sixteen of the 19 strains were serotyped to groups 6, 8, 53, 56, 153, and 174. Three strains were not serotyped to any known group. All isolates were resistant to multiple antibiotics. Most strains were resistant to gentamicin, kanamycin, chloramphenicol, and streptomycin. Ribotyping of the multidrug-...
متن کامل